Best References Basics

The primary function of CRDS is to assign the names of calibration reference files required to calibrate datasets to their metadata headers.

Operating on site using the CRDS cache at /grp/crds/cache by default, CRDS “just works” for bestrefs with no extra configuration required.

CRDS provides the crds bestrefs program for updating dataset headers for HST with the current best references. Running bestrefs for HST is accomplished via:

$ crds bestrefs --files dataset*.fits --update-bestrefs

This command updates the FITS headers of the files specified by dataset*.fits with the names of the latest best reference files known to /grp/crds/cache.

Default Onsite Use

The CRDS default configuration permits CRDS to operate onsite with no explicit environment settings.

By default, CRDS operates using /grp/crds/cache with no connection to any CRDS server.

Files and settings in /grp/crds/cache define the references that CRDS will assign to a given dataset.

Offsite and Pipeline Use

CRDS can be configured to operate from private/local CRDS caches. See the instructions below for setting CRDS_PATH and CRDS_SERVER_URL.

A private cache reduces the level of network i/o required for offsite use as well as eliminating constant dependence on CRDS web servers required to run a pipeline. A private cache can also contain writable files suitable for experimentation.

  • Onsite pipelines use private caches to reduce file system contention.

  • Offsite pipelines use private caches to achieve more independence from STScI.

Setup for Offsite Use

CRDS has been designed to (optionally) automatically fetch and cache references you need to process your datasets to a personal CRDS cache. You can create a small personal cache of rules and references supporting only the datasets you care about:

To fetch the references required to process some FITS datasets:

$ export CRDS_SERVER_URL=   # or similar
$ export CRDS_PATH=${HOME}/crds_cache
$ crds bestrefs --files dataset*.fits --sync-references=1  --update-bestrefs

Overriding the Default Context

It’s possible to use past or future/experimental CRDS contexts rather than the pipeline’s default operational context as follows:

To fetch the references required to process some FITS datasets:

$ crds bestrefs --files dataset*.fits --update-bestrefs --new-context hst_0001.pmap

Bestrefs by Dataset ID

Ensure the appropriate CRDS environment variables are set:

Let’s say you want to download best references for a dataset with ID: ‘R0000101001001001001_01101_0001.WFI16’ from context roman_0042.pmap.

import crds
from crds.client import api
context = "roman_0042.pmap"
instrument = "wfi"
datasetid = 'R0000101001001001001_01101_0001.WFI16'
refs = api.get_best_references_by_ids(context, [datasetid])

The results are now stored in refs

   'R0000101001001001001_01101_0001.WFI16:R0000101001001001001_01101_0001.WFI16': [
      True,  {
         'area': 'NOT FOUND No match found.',
         'dark': 'roman_wfi_dark_0469.asdf',
         'distortion': 'roman_wfi_distortion_0016.asdf',
         'flat': 'roman_wfi_flat_0231.asdf',
         'gain': 'roman_wfi_gain_0142.asdf',
         'inverselinearity': 'NOT FOUND No match found.',
         'ipc': 'NOT FOUND No match found.',
         'linearity': 'roman_wfi_linearity_0195.asdf',
         'mask': 'roman_wfi_mask_0066.asdf',
         'photom': 'roman_wfi_photom_0054.asdf',
         'readnoise': 'roman_wfi_readnoise_0381.asdf',
         'refpix': 'NOT FOUND No match found.',
         'saturation': 'roman_wfi_saturation_0191.asdf'

Store matches in a list and then download:

reflist = [v for k,v in refs[datasetid][1].items() if v.split('_')[0] == "roman"]

# download them to local crds cache:
api.dump_references(context, reflist)

# or if you only want a specific reference:
api.dump_references(context, ['roman_wfi_saturation_0191.asdf'])

CRDS - INFO -  Fetching  /home/developer/crds-cache/references/roman/roman_wfi_saturation_0191.asdf  134.2 M bytes  (1 / 1 files) (0 / 134.2 M bytes)

# You can also specify which reftypes you want
refs = api.get_best_references_by_ids(
   context, [dataset_id], reftypes=["dark","distortion","gain"]

View the header information first with include_headers=True

refs = api.get_best_references_by_ids(
   context,[datasetid], reftypes=["dark"],include_headers=True


{'headers': {
   'R0000101001001001001_01101_0001.WFI16': {
      'productLevel': '2',
      'ROMAN.META.EXPOSURE.START_TIME': '2021-01-01T00:00:00.0',
      'PARAMS_SOURCE': '',
      'PARAMS_DATE': '2023-06-07T10:45:16.150628',
      'PARAMS_CTX': 'roman_0042.pmap'
}, 'R0000101001001001001_01101_0001.WFI16': [
   True,  {
      'dark': 'roman_wfi_dark_0469.asdf'